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A finite-volume procedure, comprising a gradient-reconstruction technique and a
multidimensional limiter, has been proposed for upwind algorithms on unstructured
grids. The high-resolution strategy, with its inherent dependence on a wide computa-
tional stencil, does not suffer from a catastrophic loss of accuracy on a grid with poor
connectivity as reported recently with many unstructured-grid limiting procedures.
The continuously differentiable limiter is shown to be effective for strong discon-
tinuities, even on a grid which is composed of highly distorted triangles, without
adversely affecting convergence to steady state. Numerical experiments involving
transient computations of two-dimensional scalar convection to steady-state solu-
tions of Euler and Navier—Stokes equations demonstrate the capabilities of the new
procedure. (© 2000 Academic Press
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1. INTRODUCTION

Significant developments in algorithms for Euler and Navier—Stokes equations on
structured grids have occurred in recent years. The primary motivation behind these
velopments is the ease with which unstructured grids can be generated around comnr
geometries in a relatively short turn-around time compared to that of block-structured gr
Furthermore, the random data structure associated with unstructured grids facilitates |
concentration of the grid in locations of interest such as the near-field region of any obj
Typically, unstructured grids are composed of simplices which are triangles and tetrg
dra, respectively, in two and three dimensions. Unstructured-grid flow solvers, basec
finite-volume discretization of the governing equations with upwind schemes, are prefelr
because of their robustness and their inherent ability to accurately represent the phy
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associated with linear and nonlinear waves at least in the limiting case of one-dimensic
flows. Various upwind schemes in cell-center as well as cell-vertex formulations have b
employed for solving a variety of flow problems on unstructured grids. A recent review |
Venkatakrishnan [1] provides a perspective on unstructured-grid techniques and a corr
mentary overview of the current state of the art has been presented by Mavriplis [2]. Bar
[3] reportis an illuminating source of more comprehensive information on different aspe
of unstructured grids and finite-volume solvers.

Accuracy is the most important aspect of any flow solver since it has a direct influence
the number of computational cells required to resolve a flow field to a desired extent as
nomically as possible. The inadequacy of a first-order accurate scheme, which is base
a piecewise constant representation, necessitates higher order implementation involvi
gradient-reconstruction procedure. A higher order scheme not only yields improved res
tion in regions of smooth flow but also significantly reduces the smearing of discontinuiti
Initial attempts at implementation of higher order upwind schemes on unstructured gt
focussed on extensions [4—7] of the one-dimensional reconstruction procedure base
the MUSCL approach [8], which had proved to be quite effective for structured-grid cor
putations. However, because of the highly multidimensional nature of unstructured gr
these techniques were only partially successful and it has been reported [9], but without
merical evidence, that poor quality results could be obtained on highly distorted grids e
for smooth solutions. Limitations of a one-dimensional reconstruction procedure have b
demonstrated in [10] where isotropic and anisotropic two-dimensional grids were emplo
and the incompatibility of the latter, for the simulation of a unidimensional shock-tube pro
lem, was clearly revealed by the strong dependency of the results on grid connectivity.
introduction of a multidimensional gradient-reconstruction procedure for Euler compu
tions, employing both cell-center and cell-vertex formulations on unstructured grids, col
be attributed to the pioneering developments due to Barth and Jespersen [9]. A majc
of the subsequent developments on higher order accurate unstructured-grid computa
reported in the literature have followed the multidimensional approach.

Since modern upwind algorithms for compressible flow are designed for capturing c
continuities accurately, higher order schemes often produce nonphysical oscillations wit
can be effectively suppressed by employing limiters. However, it is known that limiters ¢
adversely affect the convergence of the solution to steady state, and continuously dif
entiable limiters such as that of van Albaetal. [11] are generally preferred [12] even
for structured-grid computations. The multidimensional limiter, developed by Barth al
Jespersen [9] for Euler computations on unstructured grids, has been shown to stall
convergence to steady state. Furthermore, attempts [13, 14] to improve the converge
characteristics of limiters for unstructured grids have not been completely successfu
yielding oscillation-free steady-state solutions. A particularly vexatious limitation in tk
form of an adjustable constant [13], which leads to a loss of robustness owing to a lacl
universality, has introduced a measure of uncertainty in the application of unstructured-(
flow solvers for large complex problems.

The presentresearch has been motivated by the necessity to improve upon the multidir
sional gradient-reconstruction procedure for unstructured grids. The high-resolution [
procedure proposed is shown to yield accurate solutions on a grid with poor connectivity
new multidimensional limiter has been devised and its effectiveness has been demonst
for strong discontinuities without adversely affecting convergence even on a grid whict
composed of highly distorted triangles. The limiter, which is endowed with the proper
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of continuous differentiability, does not clip smooth extrema. The gradient-reconstruct
procedure is also beneficial for viscous flow computations on unstructured grids, which
considered to be relatively expensive as compared to structured grids because of the pe
associated with the employment of different computational stencils for inviscid and viscc
terms apart from the more complicated formulae resulting from the inherently multidime
sional construction. A unified approach for higher order accurate Euler and Navier—Stc
equations as presented here is helpful in reducing computational costs quite significe
apart from producing accurate solutions.

The paper has been organized in the following format. The next section briefly prese
the governing equations for the two-dimensional compressible viscous flow and the fin
volume formulation. Sections 3 and 4 deal with the higher order accurate techniques
limiters, respectively. The results for several test cases from two-dimensional scalar c
vection to Euler and Navier—Stokes equations are presented in Section 5. Conclusions
be found in Section 6.

2. GOVERNING EQUATIONS AND FINITE-VOLUME FORMULATION

The governing equations for two-dimensional viscous compressible flow in Cartes
coordinates can be expressed in nondimensional form [16] as
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The two-dimensional system of equations can be expressed in integral form as
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FIG. 1. Typical computational cell for an unstructured grid.

where A is the area of the computational cell, which is a triangle as shown in Fig. 1. T
spatially integrated form of Eq. (6) can then be represented as

3
A— + Y [(Fy — Fny)As] = 0. ()
=1

HereU is the cell-averaged valu&y and Fyy are the inviscid and viscous flux vectors
normal to an interface, respectively, and is the length of an interface. The notations usec
here are the same as those in Ref. [16], which contains additional details in the conte»
structured grids.

The finite-volume approach is based on the physical concept of using macroscopic ¢
trol volumes to numerically solve the governing equations (7). There are primarily tv
different ways of defining the control volume in the case of two-dimensional unstructur
grids. The control volumes could be directly chosen as the triangles generated by the ¢
generation process or alternatively either the median or centroidal dual to the triang
could be prescribed for this purpose. These definitions lead to cell-center and cell-ve
approaches, respectively, and there does not appear to be a consensus on which of th
is better with both being used extensively. In a centroidal dual the centroid of each of
triangles, which meet at a vertex, are directly joined to two of the immediate neighbori
centroids. However, in a median dual the centroids are joined indirectly via the medic
so that each dual edge comprises two line segments and then simplifications [10] are ¢
introduced to reduce two flux evaluations for each edge to only one based on the nor
vector to the edge corresponding to the centroidal dual. Such a simplification may not
justifiable for a pair of highly obtuse neighboring triangles where the line joining the tw
centroids may not even intersect the interface common to them [9]. Furthermore, it shc
be emphasized that computation of a flow field with a certain level of accuracy, achi
able by satisfying the governing equations at a prescribed number of discrete locati
will require a coarser grid for a cell-center implementation as compared to a cell-ver!
one. This is due to the number of triangles being double the number of vertices that de
them in the case of an unstructured grid, whereas for a structured grid the cells, which
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guadrilaterals, and the associated vertices are the same in number, neglecting bout
effects. Furthermore, the cell-center approach for a triangular unstructured grid can be
garded as a natural extension of its counterpart for a quadrilateral structured grid witt
center atthe centroid of the triangle and its three sides as interfaces as compared to four f
latter. In contrast to a cell-vertex method for an unstructured grid, the fixed number of int
faces associated with the cell-center method leads to a simplerimplementation withan e
based data structure and is well suited for the linear reconstruction procedure propose
this paper. Also, itis one of the motivating factors in the design of the new multidimensiot
limiter.

The solution process begins by defining cell averages stored at the cell centers.
of Riemann solvers to compute the numerical fluxes at an interface needs the pres
tion of a set of primitive variables on either side of an interface, known as “left” an
“right” states. The edge-based data structure provides the necessary information to «
pute the interface numerical flux. For a first-order-accurate scheme the left and right st
are nothing but the corresponding cell-center values. However, for second-order-acct
computations, information beyond the nearest neighbors is needed, where the con
distribution within a cell is replaced by a piecewise linear distribution. Second-order «
curacy is achieved by a multidimensional linear reconstruction process which compt
cell-centered gradients of the chosen set of primitive variableReferring to Fig. 1, we
then obain the higher-order-accurate valifewithin a computational cell using Taylor’s
series,

W =Wy, + VWi, -1, (8)

whereW, is the cell-averaged value prescribed at the cell cenisithe vector extending
from the cell center to the center of any of the three interfaces as showiv,\&hds the
cell-centered gradient, which is computed as described below.

Green's theorem applied to a scalar relates the area integral of the gradient to its
integral over the boundary as

//AVdedy: %Wndl, 9)

wheren is the outward pointing local unit-normal vector dndenotes the boundary .
If the gradient is assumed constant over the cell, the above equation yields

1
vwmzz\nyndl. (10)
|

Various second-order techniques, based on the multidimensional reconstruction proce:
differ in their estimate of this average gradient as determined by the closed path of integra
| whose support is often called a stencil. A new gradient-reconstruction procedure, wt
is intrinsically endowed with a dependence on a wide stencil that serves to reduce
effects of grid sensitivity, is presented in the next section. The numerical flux can tf
be straightforwardly computed based on second-order left and right states. In the pre
investigation, the interface numerical flux is obtained using Osher’s flux-difference splitti
scheme, which has been implemented as in Ref. [16] based on a grid-aligned locally «
dimensional construction for Euler and Navier—Stokes computations.
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3. LINEAR RECONSTRUCTION

Details of various multidimensional reconstruction techniques are presented in this ¢
tion. Existing methods, which are reported in the literature, are discussed in brief alc
with their advantages and shortcomings before the new reconstruction procedure is ir
duced. As mentioned earlier, several attempts have been made to extend the struct
grid techniques to unstructured grids; these have achieved only partial success owin
the pronounced grid sensitivity [9, 10] of the underlying one-dimensional reconstructi
procedures. This indicates that the inherently multidimensional unstructured-grid geom
should be carefully taken into account when developing a higher-order-accurate reconst
tion procedure. The proposed technique should possess dependence on awide compute
stencil to make it suitable for highly distorted triangles, which are often introduced by t
grid-generation procedure even for a simple configuration. In contrast to a structured g
where the number of quadrilaterals meeting at a vertex is precisely four, the number of s
triangles is arbitrary in the case of an unstructured grid. Thus the reconstruction techni
should not strongly depend on vertex values, which are obtained from the corresponc
cell-centered values by some algebraic procedure, even though this would be desirab
an extent in a cell-centered formulation to naturally increase the width of the computatio
stencil.

To compare and contrast various reconstruction techniques a grid composed of e
lateral triangles is chosen for illustration, but these procedures can be straightforwal
extended to more arbitrary triangulations. A multidimensional linear reconstruction tec
nique for higher-order-accurate Euler equations on unstructured grids was first introdu
by Barth and Jespersen [9]. They applied the Green—-Gauss theorem to compute the
dient within a cell using the cell-center values of its neighbors. For the gradient comy
tations, two different stencils were used as shown in Fig. 2. The first one is obtained
simply joining the centroids of the immediate neighbors (shown in Fig. 2 as dotted lin
joining abc), but it may degenerate [9] into a straight line for highly distorted triangles
The second stencil (dashed lines in Fig. 2) overcomes this problem by including all -
cells that share a common vertex with the parentmelihus enlarging the computational
stencil.

FIG. 2. Stencils for Barth & Jespersen ((i) dotted, (ii) dashed) and Frink (shaded) reconstruction procedur
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Frink [17] adopts a different strategy to increase the support of the computational st
cil. In this reconstruction technique the values at all the vertices are computed by us
inverse-distance-weighted averaging of the solution quantities stored at cell centers
are common to a vertex. The gradients are then computed by applying the Green-G
theorem to the three vertices with the path of integration being the three sides of the
itself, as shown in Fig. 2. It has been reported [17] that this method introduces enot
dissipation that oscillation-free solutions can be obtained without the use of limiters o
reasonably coarse grid for a flow field containing shocks. Furthermore, it is also cautiol
in Ref. [17] that limiters may have to be used to eliminate oscillations on a sufficiently fil
mesh. However, numerical experiments conducted in Section 5 reveal that even on a cc
mesh this reconstruction technique does give rise to oscillations for a discontinuous pre
propagated by the two-dimensional linear convection equation.

An inverse-distance or a pseudo-Laplacian procedure is usually employed to obtain
tex values from the corresponding cell-centered values. The accuracy of the solutio
reported to be less than second order when an inverse-distance method is used [1¢
computing vertex values. A fully second-order-accurate method to estimate the value
the vertices using the surrounding cell-center data was presented by Holmes and Col
[19]. This new pseudo-Laplacian procedure gives most of the benefits of a true Laplac
and is also computationally inexpensive. However, for some severely distorted trianc
these “optimum” weights can either become negative or become too large [19, 20].
overcome such problems, Holmes and Connell have chosen to artificially clip the weig
in the range (0, 2). It should be mentioned here that the clipping of weights, however, wo
result in loss of second-order accuracy, which may not be a cause for concern provi
it occurs at isolated locations. This procedure for vertex values was also adopted su
quently [18] by Frink who later [20] reverted back to the inverse-distance method, wh
anomalous behavior was observed for Navier—Stokes computations with a pseudo-Laple
approach, and a limiter was also employed within this framework in contrast to previc
practice [17, 18]. However, for the humerical experiments reported in Section 5.3, no
ficulties were encountered with a pseudo-Laplacian approach even for strongly separ
flows.

An alternate procedure, which avoids involvement of vertex values for Euler comg
tations, has been proposed by Pan and Cheng [21]. They essentially employ Barth
Jespersen’s three-point stencil in their construction but the gradient is centered owin
contributions from the three neighbors that share an interface as shown in Fig. 3.
moadification increases the support of the stencil and consequently smoothens the ¢
puted gradients for highly distorted triangles, thus enhancing the stability of the ovel
scheme [21].

Itwould be instructive to compare the number of points involved in gradient computatic
with various methods for a grid consisting of equilateral triangles. Barth and Jesperse
method uses 3 and 12 points for the two stencils shown in Fig. 2, whereas Frink’s met
uses the additional information from the cell itself, which gives it a support of 13 points. P
and Cheng’s method is based on a 10-point stencil, which leaves out 3 that share a v
with the given cell as shown in Fig. 3. Having identified the support stencil and the numlt
of points involved in computing the gradient, it would be interesting to determine whett
these gradients are centered at the centroid of the cell @iitanx)?, (Ay)?). It should
be stated that a gradient estimate®fAx, Ay) is sufficient for second-order accuracy of
the overall scheme. However, a gradient which is properly centered at the centroid f
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FIG. 3. Stencil for Pan and Cheng reconstruction procedure.

regular triangular grid turns out to be advantageous in mimicking a Fromm-type [22]
construction with favorable dispersion characteristics, at least for one-dimensional flo
It can be inferred (Appendix) that even for this limiting case of equilateral triangles, tl
x andy gradients computed using Barth and Jespersen’s as well as Frink's three-p
stencils are not properly centered. On the contrary, Barth and Jespersen’s 12-point st
yields a perfectly centered gradient as is the case with the new reconstruction procec
The detailed expressions for tkeandy components of the gradients can be found in the
Appendix for all these methods. It should be mentioned that even for a grid consisti
of equilateral triangles the number of points involved in the computation ok thed y
components of the gradient are not the same for a prescribed method. The stencil |
by Pan and Cheng, by virtue of contributions from the neighboring cells, also results i
perfectly centered gradient. Although perfect centering ofxtlaady components of the
gradient, in the limiting case of equilateral triangles, is an attribute for any multidimensior
reconstruction procedure itis equally important to ensure that the implementation of limit
can be readily carried out in the prescribed framework. The present reconstruction proce!
has been specifically designed for compatibility with the strategy employed for the propo:
three-gradient limiter.

One of the motivating factors behind the development of a new reconstruction procec
is the observation that both existing structured- as well as unstructured-grid methods
different stencils for estimating gradients for inviscid and viscous fluxes; i.e., there is
unified approach such that the total computational cost can be reduced by computing
gradients only once and using them. The new approach represents a method in whicl
face gradients which are necessary to compute the viscous fluxes turn out to be constitt
of the cell-centered gradients needed for the inviscid fluxes.

It is well known that a gradient plane is uniquely defined by three non-collinear poin
This is the starting point of the new reconstruction technique which computes gradie
based on two vertices (end points of an interface) and a cell center (on either side o
interface) by looping over all the interfaces. The area-weighted average of the gradie
on either side of an interface gives tkeandy gradients for the face. Consider the two
triangles in Fig. 4A13m andAla3 for which thex andy gradients can be computed using
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FIG. 4. Stencil for new reconstruction procedure.

the Green—Gauss theorem as

1
(W)1am = 57— [W1Yms + WinYa1 + Wayin] (11)
2A13m
1
(Wy)13m = — 57— [WiXm3 + WinXa1 + WaXqm] (12)
1
(Wy)1a3 = 5—[WaYza + WaYa1 + WaYi3] (13)
2A1a3
1
(Wy)1a3 = — 57— [WiXaa + WaXa1 + WaXy3], (14)
2A1a3

whereyms = Y3 — ¥m, Xm3 = X3 — Xm, and so on. The next step in obtaining the face gra
dient is to use the area-weighted average of these two gradients for the trianglesd 3
1la3:

[ A13m(Wi) 13m + Aa3(Wx)1a3]

Wx a3m — 15
(Whras [A1an + Asas] (13)

[Aran(Wy)1am + Azaz(Wy)1a3]
[Aizm + Atas] .

(Wy)la3m = (16)

Substituting Egs. (11) and (13) in Eg. (15) and Egs. (12) and (14) in Eqg. (16) gives |
expressions

1
(Wx)laSm = T [(Wa - Wm)Yl3 + (Wl - WS)Yma] (17)
1a3m

(Wy) la3m = —

oA [(Wa — Win)X13 + (W1 — Wa)Xmal, (18)
1la3m
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where Ajasm = Aaam + Aras. These face gradients are also employed for computing tr
viscous fluxes for Navier—Stokes computations.

The gradient for a triangular cell is then constructed using the area-weighted averag
the corresponding face gradients as follows:

[ A1a3m (Wx ) 1a3m + ASch (Wx ) 3c2m + A2b1m (Wx ) 2b1m]
[Asazm + Ascom + Azbim]

[A1a3m (Wy) 1a3m + Ascom (Wy)SCZm + Azbim (Wy)Zblm]
[Azazm + Agcom + Azbim] '

(Wx)m = (19)

(Wy)m = (20)

It may be noted that area weighting is carried out in Egs. (19), (20) so that the ar
which appear in the denominator in Egs. (17), (18) (and in similar expressions for t
other two faces) get cancelled out. This ensures that contributions at pair-wise comr
interfaces for the three faces get eliminated so that the resulting expression correspon
a reconstruction based on a hexagonal path with three vertex and three cell-centered v
traversed alternatingly.

However, the gradient for a computational cell is taken to be the area-weighted averag
the gradients corresponding to its three neighbors, rather than from the above prescrip
which enables limiting to be carried out straightforwardly in a framework discussed
the next section. The simplified expressions for the unlimiehdy components of the
gradient for a computational cell, in the case of a grid consisting of equilateral triangles,
be found in the Appendix. It should also be mentioned that these simplifications, valid
equilateral triangles, were not introduced in Section 5 for those computations that invo
unlimited gradients on an arbitrary grid.

The vertex values are computed using the pseudo-Laplacian method proposed by Ho!
and Connell [19] with a slight modification regarding the clipping of weights. The clippin
procedure was found to be necessary only at the boundaries since one-sided triangulati
the domain at such locations yielded unrealistic values of weights for the boundary vertic
It turns out that when the boundary vertices are shared between two or three triangles
pseudo-Laplacian procedure generates either zero or negative weights for some or &
the cells. The proposed modification involves assigning unity for the weights if they
vanish as is the case when the boundary vertex is shared between two triangles. If
weight becomes negative then its absolute value is taken for simplicity. Furthermore,
weights for the boundary vertices are clipped to prevent any of them from exceeding ur
The modification of weights, which is only carried out for the boundary vertices, is n
expected to have a significant impact on accuracy since subsequent imposition of boun
conditions at these locations would weaken the effect.

4. MULTIDIMENSIONAL LIMITER

The design and development of multidimensional limiters for unstructured-grid comg
tations has been a topic of active research in the recent past. In spite of sustained ef
by various researchers in this field, there has been very little progress in achieving c
sistent oscillation-removal capability in conjunction with good convergence characterist
for computations with limiters. However, all these efforts have helped in understanding
various aspects involved in the design of multidimensional limiters. The inadequacy of o
dimensional implementation of limiters on unstructured grids indicates that the limiters he
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to be inherently multidimensional in construction. Another desirable property of limite
is continuous differentiability, which helps in achieving smooth transition between di
continuous jumps with first-order representation and sharp but continuous gradients wil
require second-order consistency. Also, use of nondifferentiable functions has been sh
to adversely affect the convergence of the solution to steady state in most of the cases

Barth and Jespersen [9] were the first to propose a multidimensional limiter for Eu
computations on unstructured grids. This popular and the most widely used limiter |
been shown to stall the convergence to steady state [13], which could be due to the u:
nondifferentiable functions such as max and min, apart from clipping smooth extrema [Z
Venkatakrishnan’s modification [13] helps in improving the convergence characteristics
the original limiter, which, however, comes atthe expense of compromising on monotonic
Also, the convergence seems to be strongly influenced by a parameter, which controls
degree of limiting, that is a function of an estimate of average grid size and an arbitr
constant chosen by conducting a few numerical experiments for each problem. The nee
such user interactions makes it difficult for the limiter to be applied for large general-purpc
solvers. Another modification was attempted by Aftosetil.[14] who observed that Barth
and Jespersen’s limiter attenuates the gradient in all directions equally and suggeste
directional implementation. Even though this approach reduces the inherent dissipatic
the limiter, it fails to provide satisfactory results.

Since the convergence problems can be largely attributed to the use of nondifferenti:
functions, it would be advantageous to employ differentiable limiters that have proved
be quite successful with structured-grid computations. The van Albada limiter, apart fr
being continuously differentiable, has the additional attractive property of not clippi
smooth extrema. Earlier attempts to implement the van Albada limiter on unstructu
grids in a one-dimensional framework have failed [4, 23] to yield results which are relative
insensitive to the grid. This indicates that for unstructured-grid computations, a limiter
to be multidimensional in construction apart from being differentiable. It can be seen frt
the work of Van Rosendale [24] that a three-gradient extension of the van Albada limi
can be readily constructed based on a straightforward generalization.

For a two-dimensional triangular unstructured grid, the limited gradient within a cell ¢
be obtained by taking the weighted average of three representative gradients,

wherew,, wp, andw, are the weights given by the multidimensional limiter function anc
VW,, VW, andVW, are the three unlimited gradients which are combined to produce t
limited gradientvW/.. The choice of these three gradients plays a crucial role in limitin
convergence as well as in obtaining a good-quality solution which is relatively insensit
to grid perturbations and connectivity.

Van Rosendale’s choice was inspired by the representation of the larger of Barth
Jespersen’s stencil (Fig. 2). The gradient obtained from this stencil can be interprete
being the area-weighted average of the gradients at the three vertices of a cell as comj
by applying the Green—Gauss theorem to the surrounding cell-center data. This proce
essentially reverses the sequence of operations employed by Frink in which vertex va
are computed first and then the Green—Gauss theorem, applied to the three vertex ve
provides the gradient for a cell. After computing the gradiérite;, VW,, andVW; at the
three vertices of the cefh, Van Rosendale obtains the weights which are functions of tt
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three unlimited gradients. The weights corresponding to the van Albada limiter [24] are

(G203 + €2)
G2, O3) = 22
OO %2 9 = (0 o 0 + Gsr + 3¢0) (22)
(0103 + €2)

.02, O3) = 23
0201, 8. 88) = (o ot + G0 + 3¢D) (23)
+ €2
w3(G1, G, G3) = (0100 + €7) (24)

(102 + 9203 + Ga01 + 3€?)’

whereg:, g2, andgs are functions of the three vertex gradients involved in the limiting
process and can be chosen as the square aftherm, i.e.g; = ||[VWi |2, g2 = || VW2 |13,
andgs = ||VWs||3, which is a computationally efficient choice. Furthermearés a small
number which is introduced to prevent indeterminacy, caused by the vanishing of the tt
gradients, in regions of uniform flow. The constraints on the weights for second-order c
sistency require each of them to becoryi@ when the three gradients are equal. The weight
are homogeneous of degree 0 so that the limited gradient turns out to be homogeneol
degree 1 to ensure that the units of measurement scale out linearly. In addition, symm
with respect to pair-wise interchange of gradients requires

@1(01, 92, 93) = w2(92, 91, U3) = w3(Qs, G2, O1). (25)

The limited gradient using Van Rosendale’s procedure can be obtained by replacing
gradients fora, b, andc in Eq. (21) by those corresponding to the vertices 1, 2, and 3.
may be recalled that the one-dimensional van Leer limiter is the harmonic average of 1
differences, the forward and backward. In some sense this multidimensional limiter, whic!
referred to as a van Albada limiter in [24], can also be regarded as a van Leer limiter becze
it turns out to be a harmonic average for each of the two components of the gradient ve«
with appropriately prescribed weights, provided the three values involved are positive
should, however, be noted that the weights for the two components of the limited gradi
vector are the same in Eq. (21), which is the formulation employed in the present resea
Several numerical experiments showed that this multidimensional limiter, which pc
sesses the property of not clipping smooth extrema, performs well for most of the fl
problems considered but fails to completely remove oscillations at discontinuities for a f
of them (Section 5) in an implementation quite different from that of Van Rosendale [2
This led to the development of a new multidimensional limiter, which has been shown to
consistently effective in removing oscillations and has excellent convergence characteris
in addition to not clipping smooth extrema. It involves the prescription for the weights a

(ObGc + €2)

®a(Ga, Ob, 9c) = (gg + gg + gg + 362) (26)
(dalc + 62)

@b(Ga; b, Gc) = (B + G+ &+ 3 (27)
(Galb + €2 29)

@c(Ga; O, ) = (02408 + 92+ 3¢?)’

wherega = |[VWall3, gb = [[VWh]|3, andge = || VW,||3. Even though this modification in
the weights may appear minor the implementation of the procedure differs significar
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from that of Van Rosendale [24] in the choice of gradients for constructing the limite
this is the primary reason for introducing different subscriptsgan Egs. (22)—(24) as
compared to Egs. (26)—(28). Instead of the three vertex gradients chosen for limiting
[24], an implementation appropriate to the flow physics inherentin a MUSCL finite-volun
formulation forms the basis for prescribing the three gradients in the present case. Since
cell interacts with its neighbor through the common interface, the cell-centered gradie
of the three neighboring cells should be a more relevant choice for limiting and are u
in the present work in all test cases including those involving the van Albada limiter. T
resulting stencil from this nonoverlapping construction is shown in Fig. 4. The unlimite
gradient for a cell is taken to be the area-weighted average of its three neighboring
gradients, ensuring cancellation at common interfaces as the result of contiguity, whic
an important requirement fulfilled by the present hexagon-based reconstruction procec

Care must be exercised in choosing the third gradient at the boundary where two diffe
approaches can be used for the limited as well as unlimited construction. To maintain c
sistency with the nonoverlapping construction, one can use a face gradient for the boun
interface. Alternatively, to make it somewhat similar with the interior representation tl
cell-centered gradient for the boundary cell can be employed, which makes the const
tion an overlapped one. Numerical experiments show that these two constructions a
boundary do not make much of a difference insofar as the solutions are concerned.

The implementation of the new limiter is straightforward since, after computing the ce
centered gradients in all cells, limiting can be carried out for each cell in the domain, wh
requires the unlimited gradients of its three immediate neighbors. The limited gradi
VW] then replaces the unlimited gradient\Vi,, in Eq. (8) to get the higher-order-accurate
limited values ofW.

5. RESULTS AND DISCUSSIONS

The following numerical experiments are aimed at assessing the accuracy of the
reconstruction technique for a variety of problems and testing the effectiveness of the |
limiter in removing the numerical oscillations that occur in the neighbourhood of shoc
without stalling the convergence to steady state. It should be mentioned that limiters h
been deployed actively without recourse to any freezing [13] strategy in all the computatic
Furthermoregs?, which is a small number introduced to prevent indeterminacy in the weigh
for the limiter, has been set to be 2 in all numerical experiments reported here. Laminal
Navier—Stokes computations for separated flows have been carried out to demonstrat
feasibility of a unified formulation for inviscid and viscous fluxes.

5.1. Two-Dimensional Linear Wave Equation
Consider the two-dimensional wave equation
u+V-F=0 (29)

with F(u; @) = uarepresenting the flux vector amadeing the constant wave velocity. The
upwind flux at an interface is given by

fu u)_{F(u._;a)-n ifa-n>0 (30)
TR T \Furia) - n otherwise.
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Heren is the unit normal vector pointing from left (L) to right (R) for an oriented inter-
face. In a first-order-accurate computation, only cell-centered values are used for the
and right states. Higher-order-accurate interface values are obtained from Eg. (8) with
cell-centered gradient computed using Frink’s method apart from the new reconstruct
procedure as described in Section 4. In this transient computation, second-order temy
accuracy is achieved by the two-stage Hancock [11] procedure

At
ulbft2 =l — —— ) F(ul + VUl 1) -n (31)
24n -
At
URt = Ul — 2 Y F(UR™ 4+ VU v ), (32)
m

whereAy, is the area of the computational cell and the summation is to be carried out o
the three bounding interfaces. This time-integration procedure has also been employe
Ref. [25] to study the behavior of various limited reconstruction techniques as appliec
Eq. (29) for the convection of a square discontinuity, as chosen in the present example,
a double sine profile.

The entire computational domain, defined b < x, y < +1, is composed of right-
triangular cells constructed from a uniform structured grid in two different ways wit
anisotropic or isotropic connectivity; the resulting unstructured grid types are referred
as A and B, respectively. Grid A is obtained from the square cells by locally joining tt
top-left to bottom-right corner as in [25] whereas grid B is generated by requiring that ec
of the four neighboring squares that share an edge has diagonals oriented opposite tc
prescribed for any cell. Thus half of the interior vertices for grid B would be located at t
intersections of four interfaces and the remaining half would have eight interfaces, wher
for grid A all the interior vertices are connected to six interfaces. It has been recently shc
[26] that limiters which strongly depend upon grid connectivity encounter difficulties fc
convection on grid B, which results in catastrophic loss of accuracy as reflected by first-or
degradation of eveh; error norms. It should be noted that in the pattern of connectivit
which has been prescribed here, grid B is the same but grid A has diagonals orier
opposite to that of Ref. [26]. The convection velocity is prescribed ta be(l, 2)7 as
in Ref. [26] so that the initial profile is convected from bottom-left to top-right direction
making an angle of about 63vith respect to the positive axis, with periodicity imposed
to permit reentry. It should be noted that the convection direction is neither aligned w
any of the interfaces of a computational cell nor aligned with their normals. The tin
step At is determined by choosing a constant mesh ratio of 0.1,A¥.| = 0.1, where
| = /24, is the spacing between two successive vertices inxtloe y direction. The
cell-averaged value, which is obtained by analytically integrating the prescribed init
profile within the triangular cell, forms the initial condition for each of the grid types; thi:
is also the exact solution at a time when the convected distribution returns to its star
location.

Two initial profiles, a square discontinuity and a doubly raised cosine which has a st
but continuous gradient, are used, respectively, as test cases to determine the oscille
removing capability and accuracy of the limiters. The results are presented when the ¢
vected profile first returns to its original position and the carpet as well as the contour pl
are for the coarsest grid, corresponding te 0.0333. A grid-refinement study has been
conducted for the doubly raised cosine with the slopes, obtained from the plots Iof,
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andL, errors againdt(= Ax = Ay) for grids A and B, indicating the order of accuracy
on each of these two grid types.

5.1.1. Square discontinuity.The square discontinuity, defined betweeh < x, y <
+1, has the following functional form:

1 if—05<x,y<+05

33
0 otherwise. (33)

ux,y) = {

The carpet as well as the contour plots of this initial profile, which is also the exact soluti
after convection, are shown in Figs. 5a,c for grid A and Figs. 6a,c for grid B. The first-ord
accurate scheme on grid A is highly dissipative and smears out the discontinuity comple
as inferred from Fig. 5b with a noticeable anisotropy induced by the grid clearly evide
in Fig. 5d. However, convection on grid B largely preserves isotropy of the initial profil
as revealed by the contour plot in Fig. 6d, even though the first-order-accurate schen
relatively less dissipative for this grid type.

The next step is to test higher-order-accurate methods without limiters to determ
the extent of oscillations encountered with the new method of evaluating the gradie
which is centered in the limiting case of an equilateral triangulation, so that comparist
can be established on an anisotropic grid consisting of right-angled triangles with Frin
method. Figures 7a—d show carpet and contour plots obtained on grid A with Frink’s
well as the new method. It can be seen that Frink’s method produces larger overshoots
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TABLE |
Maximum and Minimum Values for the Square Discontinuity

First order Frink Unlimited van Albada New limiter
Max Min Max Min Max Min Max Min Max Min
Grid A
0.0333 0.939 0.002 1.225 -0.119 1.113 -0.061 1.005 -0.002 1.000 0.000
0.0167 0.994 0.000 1.250 -0.133 1.116 -0.063 1.004 -0.001 1.000 0.000
0.0111 0.999 0.000 1.267 -0.141 1.117 -0.064 1.004 -0.001 1.000 0.000
0.0083 1.000 0.000 1.278 -0.148 1.119 -0.066 1.003 -0.001 1.000 0.000
Grid B
0.0333 0.979 0.000 1.221 -0.136 1.121 -0.067 1.020 -0.013 1.000 0.000
0.0167 0.999 0.000 1.244 —0.151 1.127 -0.072 1.020 -0.013 1.000 0.000
0.0111 1.000 0.000 1.260 -0.161 1.130 -0.075 1.020 -0.013 1.000 0.000
0.0083 1.000 0.000 1.270 -0.168 1.134 -0.079 1.021 -0.014 1.000 0.000

undershoots as compared to the new method. Furthermore, the new method performs |
in preserving the symmetry of the initial profile and maintains the extent of oscillation
a uniform level. A similar conclusion holds for convection on grid B and the plots hay
not been shown. However, the maximum and minimum values for convection on grids
and B are presented in Table | for different grid spacings, which leads to the conclus
that the new method produces less oscillations even on a fine grid than Frink’s met
on a coarse grid. It can also be observed that convection on grid B with the new met
yields slightly larger magnitudes of extrema, for a prescribed grid spacing, comparec
those on grid A. This is also the case with Frink’s method for the minima but the trend
reversed for the maxima. However, these results confirm the need for limiters even tho
Euler results [17, 18] with Frink's method without limiters apparently do not reveal o
cillations in the neighborhood of shocks whereas limiters were employed subseque
[20] for three-dimensional Navier—Stokes computations. In the present study the ap
cation of limiters has been restricted to the new procedure for gradient estimation si
the proposed implementation of limiters cannot be extended straightforwardly to Frin
construction.

The van Albada limiter fails to completely remove oscillations on grids A as well as |
which is evident from the values listed in Table I. The extent of oscillations, being small,
not clearly represented in Figs. 8a and 9a, which contain the carpet plots for the two ¢
types, but the corresponding contour plots in Figs. 8c and 9c reveal some distortions a
peak and traces of undershoots. The new limiter does not produce any oscillations upon
refinement as observed from Table | with Figs. 8d and 9d, for grid types A and B, whi
show the contours to be nearly symmetric and free from distortions. Closer examinai
of Figs. 8d and 9d reveals barely perceptible anisotropy of the convected profile on ¢
A relative to grid B. This is in contrast to the significant anisotropy found in the resul
presented for the square discontinuity on grid A in Ref. [25] for the Durlo&tkgl. [27]
or MLG (maximum limited gradient) procedures for limiting. It should also be noted th:
the new limiter resolves the intersection of discontinuities at the four corners, significar
better than any of the limiters tested in Ref. [25]. The spikes are much more pronounce
the four corners as inferred from the carpet plot of Fig. 7b for the unlimited case.
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TABLE Il
Maximum and Minimum Values for the Doubly Raised Cosine

First order Frink Unlimited van Albada New limiter
Max Min Max Min Max Min Max Min Max Min
Grid A
0.0333 0.475 0.000 0.983 —0.020 0.976 —-0.010 0.930 0.000 0.876 0.000
0.0167 0.644 0.000 0.997 —0.008 0.996 -0.004 0.975 0.000 0.950 0.000
0.0111 0.731 0.000 0.999 —0.005 0.999 -0.002 0.986 0.000 0.971 0.000
0.0083 0.784 0.000 1.000 —0.003 0.999 -0.001 0.991 0.000 0.981 0.000
Grid B
0.0333 0.540 0.000 0.990 —0.020 0.987 -0.010 0.955 -0.001 0.916 0.000
0.0167 0.711 0.000 0.998 —0.008 0.998 —-0.004 0.985 0.000 0.967 0.000
0.0111 0.790 0.000 0.999 —0.005 0.999 -0.002 0.992 0.000 0.981 0.000
0.0083 0.836 0.000 1.000 —0.003 1.000 -0.001 0.995 0.000 0.988 0.000

The next step is to calculate the order of accuracy of the new reconstruction with ¢
without the new limiter. More importantly it is the ability of a limiter not to clip the smooth
extrema which will ensure its versatility. This can be easily verified by convecting a smo«
profile which has a sharp peak. The profile used for this purpose is a doubly raised co
defined subsequently with its peak value 1 occurring at y = 0 of the computational
domain. Compared to the double sine employed in [25-27], this has the advantage of ha
one peak and it covers only a portion of the computational domain so that any oscillati
that might occur at the base of the profile can be readily detected.

5.1.2. Doubly raised cosine.The doubly raised cosine function, defined betweén<
X,y <+1,is

1 .
7[1 4+ cog27rx)][1 + cog2xy)] if —05<x,y <+0.5

ux,y) =< * ) (34)
0 otherwise.

Carpet and contour plots for the convection of doubly raised cosine profile have not b
shown since anisotropy introduced by grid topology or convection direction could not
visibly observed and the extent of undershoots, being very small, are better represente
entries in Table II, which also contains peak values; Fig. 10 and Table Il indicate the ord

TABLE 11l
Orders of Accuracy

Grid A Grid B
L, L, Lo L, L, Lo
First Order 0.67 0.61 0.63 0.80 0.73 0.73
Unlimited 2.53 2.33 1.81 2.11 2.01 1.69
Frink 2.05 1.90 1.53 1.95 1.85 1.43
van Albada 2.43 2.19 1.45 2.05 2.02 1.51

New Limiter 2.19 1.92 1.32 2.09 1.94 1.36
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FIG. 10. Log-log plots ofL; andL, errors versus(= Ax = Ay) for doubly raised cosine on grid types A
(a, b) and B (c, d).

of accuracy of different procedures on both grid types as obtained from this grid-refinem
study.

It can be observed from Table Il that the first-order-accurate scheme predictably diffu
the profile, with grid B being better than grid A at preserving peak values, which is also tr
for all higher order schemes. Also, the peak values obtained with the new reconstruc
even without limiters is slightly less than that obtained from Frink’s method, which |
one of the disadvantages of employing a wider stencil, but this difference can be see
vanish upon grid refinement. Frink’s method exhibits discernible undershoots with the ext
being almost twice that obtained with the new reconstruction procedure as inferred fr
Table Il. It should also be noted from Table Il that the magnitude of undershoots redu
with grid refinement as expected for a continuous profile, in contrast to that for the squ
discontinuity in Table I. The introduction of limiters in the new reconstruction procedul
removes the oscillations except that the van Albada limiter produces a mild undershoot
the coarsest grid of type B. The limiters also do not clip the smooth extremum, which w
be reflected in thé . norms of the errors obtained from a grid-refinement study carried o
next.
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The slopes in Table Il indicate the order of accuracy of each scheme as obtained f
plots ofL1, Lo, andL o, errors againdtas in Fig. 10, where the plot far, error has not been
included owing to space constraints. It is clear that the two limiters preserve second-o|
accuracy of the new reconstruction procedurgirandL, norms but not in thé ., norm,
as anticipated, because of the extremum present in the initial profile. The slopes indi
the new gradient reconstruction procedure with limiters is globally second-order accul
and that the local error is between first and second order. It is particularly noteworthy t
the sensitivity to grid connectivity between types A and B, with loss of accuracy on t
latter reported in Ref. [26] for various limited schemes, has been effectively reduced by
present high-resolution procedure, which is intrinsically endowed with a dependence ¢
wide computational stencil.

5.2. Two-Dimensional Euler Equations

In this section, the accuracy of the proposed reconstruction procedure and the oscilla
removing ability of the new limiter is assessed in conjunction with the van Albada limit
based upon well-documented numerical experiments for inviscid flows. Osher’s numeri
flux function, which is continuously differentiable, has been employed to ensure that
influence of limiters on convergence characteristics can be isolated effectively. Steady-s
Euler as well as Navier—Stokes solutions are obtained with an explicit time-integrati
procedure using a six-stage Runge—Kutta technique [28].

5.2.1. Inviscid flow past a NACA 0012 airfoilThree different test cases are used tc
evaluate the performance of the reconstruction procedure and the limiter for the t
dimensional inviscid compressible flow past a NACA 0012 airfoil from AGARD [29]
and GAMM [30] workshops. The parameters correspond to two transonic flows and a s
sonic flow for which the free-stream Mach number and angle of attack aid.(i}= 0.80,

a = 1.25; (ii) My, = 0.85,« = 1°; and (iii) My, = 0.63,« = 2°. Test cases (i) and (i)

are characterized by the presence of shock waves on both upper and lower surfaces
is necessary to compute the flows with limiters to avoid numerical oscillations that m
occur in their neighborhood. Most of the unstructured-grid computations reported in
literature use solely test case (i), which has a relatively strong shock on the upper sur
and a weak shock on the lower surface. Test case (ii) is more demanding as far as the
iters are concerned because both shocks are strong. Furthermore, the shocks are pre
by a fairly large near-constant region and the limiters are expected to encounter probl
[13] in resolving this abrupt transition. Test case (iii) is a smooth flow without any shot
waves and hence it does not require the use of limiters. However, it would be desirabl
determine whether the limiters clip the smooth extremum occurring in the surface-pres:
distribution for Euler computations, which have been performed with and without limitel

Four differenttriangular meshes have been used to compute the flows described by the
cases (i)—(iii). The first one, which is referred to as structured-triangulated grid (STRI)
obtained from a structured 12832 O-grid by joining the diagonals as depicted in Fig. 11a
which contains 8192 cells in the computational domain. Figure 11b shows a perturl
grid, which is obtained by randomly perturbing the structured-triangulated grid everywh
except atinner and outer boundaries. It can be thought of as an intermediate stage betw
structured-triangulated grid and a genuinely unstructured one. Figures 11c¢,d show genu
unstructured grids, which have been generated as in Ref. [31] using the Bowyer—Wa
algorithm based on a Delaunay triangulation technique. Unstructured grid 1 (USG1
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FIG. 11. Grids used for Euler computations. (a) Structured triangulated grid; (b) perturbed grid; (c) unstrt
tured grid 1 (USG1); (d) unstructured grid 2 (USG2).

Fig. 11c has 128 points on the airfoil (similar to the structured-triangulated and perturt
grids) and 4360 cells in the computational domain, whereas the unstructured grid 2 (US
in Fig. 11d has 512 points on the airfoil surface and 12,858 cells in the computatio
domain, which is the finest grid used for Euler computations in the present work. The oL
boundary for all these grids is a circle located 12 chord lengths away from the airfoil.
One set of ghost points are generated for imposition of higher-order-accurate bounc
conditions, by reflecting the cell-centered locations of those cells with an interface abutt
the boundaries. Although computation of inviscid fluxes requires pressure alone to
prescribed at the boundaries, the gradient estimation for these boundary cells reqt
two components of velocity and specific volume to be prescribed at the ghost points. At
solid wall, zero normal velocity is prescribed and the other quantities are computed fr
the interior using the corresponding cell-center values and one-sided gradients. At the ¢
boundary, an asymptotic far-field solution consisting of a lifting flow about the airfoil i
imposed as in Ref. [32].
Figure 12 shows the coefficient of pressuGg) distributions on the airfoil for the test
cases (i) and (ii) computed on unstructured grid USG1, which are compared with str
tured grid results from Ref. [16]. In order to establish meaningful comparisons both the gr
have 128 points on the airfoil and approximately equal number of cells in the computatio
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FIG. 12. Comparison of surface-pressure distributions on structured (Ref. [16]) and unstructured grids
NACA 0012 transonic cases. (a) van Albadd,, = 0.8, « = 1.25°; (b) new limiter, M., = 0.8, « = 1.25";
(c) van AlbadaM,, = 0.85, ¢ = 1.0°; (d) new limiter,M,, = 0.85, & = 1.0°.

domain. Furthermore, the two solutions have been obtained using Osher’s scheme. It st
be mentioned that a standard van Albada limiter based on a locally one-dimensional re
sentation was used in Ref. [16] whereas both a multidimensional van Albada limiter and
new limiter have been employed in the present computations. The solutions on the unsi
tured grid in Fig. 12 reveal sharp shock-capturing ability of the proposed high-resolut
procedure and the shock locations compare favorably with those of the reference solut
on a structured grid. It can be observed that the multidimensional van Albada limiter
the new limiter are very effective in suppressing oscillations within the framework of tt
new reconstruction procedure, which yield pressure distributions on USGL1 in remarke
agreement with the structured-grid results of Ref. [16]

Figure 13 shows the performance of the van Albada and the new limiter for the t
cases (i) and (ii) on structured-triangulated and perturbed grids. As stated earlier, |
the grids contain the same number of cells and the latter is obtained from the former
merely relocating the points randomly. This random perturbation of the grid has a noticee
impact on the effectiveness of the multidimensional van Albada limiter. For test case (i),
van Albada limiter produces an overshoot for the structured-triangulated grid whereas
oscillation is completely removed on the perturbed grid, which can be seen from Figs. 13
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FIG. 13. Surface-pressure distributions with van Albada and new limiters on structured—triangulated &
perturbed grids for NACA 0012 transonic cases. (a) structured-triangulatedMiyrids 0.8, « = 1.25°; (b) per-
turbed grid,M,, = 0.8, « = 1.25; (c) structured-triangulated gridVl,, = 0.85, « = 1.0°; (d) perturbed grid,
My =0.85 0 = 1.0°.

For test case (ii), the van Albada limiter leaves a pronounced spike on the lower surface
the structured-triangulated grid. The random perturbation of the grid has apparently hel
in reducing the extent of oscillation on the lower surface for the van Albada limiter where
it seems to have slightly exacerbated the small upturning on the upper surface. This cle
indicates that the van Albada limiter is sensitive to the grid used and may not be consiste
effective in removing oscillations at discontinuities. However, the new limiter is success
inyielding oscillation-free solutions for all the cases considered. It should be mentioned t
Frink’s method was also employed for these test cases, ar€httestributions, which are
not shown here, yielded nearly the same extent of oscillations as with the van Albada limi
The convergence histories for test cases (i) and (ii) for the structured-triangulated ¢
and for USGL1 are presented in Fig. 14. Thg norm of the residual, summed over the four
nondimensional conservation equations, has been reduced by 10 orders of magnitude
the residue histories, which are plotted for every iteration, reveal a steady fall after 5 orc
of magnitude for all cases without exhibiting any tendency to stall. The initial oscillatol
convergence, present in limited as well as unlimited residue histories during a reductiot
nearly five orders of magnitude, are typical manifestations of transonic flow computatic
in which the shocks tend to oscillate about their steady-state locations before settling dc
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FIG. 14. Convergence characteristics of new limiter on structured-triangulated and unstructured grid 1
NACA 0012 transonic cases. (a) structured-triangulated ¢fid,= 0.8, « = 1.25; (b) structured-triangulated
grid, My, = 0.85, &« = 1.0°; (c) unstructured grid: USGIM,, = 0.8, « = 1.25°; (d) unstructured grid: USG1,
Me = 0.85 ¢ = 1.0°.

Similar behavior was also observed for the other grids considered and the plots have
been included because of space constraints.

The iso-Mach contours for the test cases (i) and (ii) on structured-triangulated grids
USG1, based on results obtained with the new limiter, are shown in Fig. 15. For test case
the upper surface shock is cleanly captured on both grids whereas the presence of the
shock on the lower surface is hardly discernible in Figs. 15a,b owing to uniform spacing
contours. This weak shock is more clearly represented in the corresponding surface-pre:
distributions in Figs. 12 and 13. However, for test case (ii), the shock waves on both ug
and lower surfaces of the airfoil in Figs. 15c¢,d are quite clear; they impinge normal to
surface and are free from distortions.

It is significant to study the behavior of the limiters on a fine grid where the dissipati
due to the grid is reduced to a low level. Figure 16 shows the performance of the
Albada limiter and the new limiter on USG2. The extent of oscillations in the unlimite
case and the action of limiters are clearly brought out here. In the case of strong sho
where the limiter needs to be much more active for the removal of pre-shock oscillations
undesirable consequence is that a post-shock Zierep singularity is attenuated significa
however, itis encouraging to note that for test case (i) this effect is benign for the weak sh
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FIG. 15. Iso-Mach contours for solutions on structured-triangulated and unstructured grid 1 for NAC
0012 transonic cases. (a) structured-triangulated gvid, = 0.8, « = 1.25°; (b) unstructured grid: USG1,

M, = 0.8, « = 1.25’; (c) structured-triangulated gridJl,, = 0.85, « = 1.0°; (d) unstructured grid: USG1,
My = 0.85a = 1.0°.

on the lower surface. The advantages of unstructured grids, even for a simple configura
become evident upon comparing the number of computational cells in USG2 with thc
employed in Ref. [33] for fine-grid computations of test case (i) based upon structured gri
The lift and drag coefficientsQ; and Cy) for test cases (i) and (ii) obtained with the
van Albada and the new limiter are compared in Table IV with the reference values [z

TABLE IV
Reference and Computed Lift and Drag Coefficients for NACA 0012
Inviscid Transonic Cases

My = 0.8, a =1.25 M, =0.85a =1°
Parameter C Cy C Cq
AGARD [29] 0.36320 0.02300 0.37930 0.05760
Structured [16]: 128 32  0.35495 0.02255 0.37992 0.05464
USG1—van Albada 0.34795 0.02435 0.36969 0.05902
USG1—New Limiter 0.34452 0.02696 0.37704 0.06067
USG2—van Albada 0.35083 0.02426 0.38364 0.05854

USG2—New Limiter 0.35161 0.02421 0.37371 0.05889
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FIG. 16. Surface-pressure distributions with van Albada and new limiters on unstructured grid 2 for NAC
0012 transonic cases. (a) USG2: van Albdda, = 0.8, « = 1.25’; (b) USG2: new limiterM,, = 0.8, « = 1.25;
(c) USG2: van AlbadaM,,, = 0.85, « = 1.0°; (d) USG2: new limiterM,, = 0.85, ¢ = 1.0°.

and the structured-grid results from Ref. [16] corresponding to Osher’s scheme. It car
inferred that the unstructured-grid values, based on the proposed high-resolution proce
compare favorably with those obtained on a structured grid having nearly the same nun
of computational cells.

An important aspect of a limiter, which will make it uniformly applicable, is its ability to
preserve smooth extrema encountered in Euler computations. Figure 17 shows com
C,, distributions for the shock-free test case (jii) obtained on the grids shown in Fig. 11
that order. It is clearly seen that the new limiter does not clip the smooth extremum ¢
the pressure distribution is not significantly altered even in the regions of large gradiel
The lift and drag coefficients for this test case (iii) on USG1 and USG2 are compared v
the reference values and the structured-grid data [16] in Table V. It can be seen that t
is not much variation irC, for the cases considered. The drag coefficients, being small
magnitude, reveal a greater degree of sensitivity to the grid and also to the limiter.

5.2.2. Inviscid flow past a staggered-biplane configuratiohhe primary advantage of
unstructured grids is their ability to straightforwardly account for multiple bodies in the flo
One of the popular test cases that is used for the purpose of demonstrating complex
arising from interaction effects of multiple bodies is the staggered biplane. It comprises
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FIG.17. Surface-pressure distributions without limiter and with new limiter for NACA 0012 subsonic case ¢
various gridsM,, = 0.63, « = 1.25°. (a) structured-triangulated grid; (b) perturbed grid; (c) USG1; (d) USG2.

NACA 0012 airfoils, staggered by half a chord length in the pitchwise as well as chordwi
direction. The resulting configuration yields a combination of internal as well as exterr
flow as shown in Fig. 18a, which depicts the unstructured grid generated with 256 poi
on each airfoil and with 6718 cells in the computational domain. The Mach number chos
is 0.7 with the flow being parallel to the chord of the airfoils. Under these conditions «
isolated NACA 0012 airfoil will yield a shock-free flow field whereas in the case of th

TABLE V
Reference and Computed Lift and Drag Coefficients
for NACA 0012 Inviscid Subsonic Case

Parameter C Cy
AGARD [29] 0.33350 0.00003
Structured—Unlimited [16] 0.33372 0.00017
STRI—Unlimited 0.32842 0.00079
USG1—Unlimited 0.32560 0.00202
USG2—Unlimited 0.33198 0.00054
USG1—New Limiter 0.31815 0.00561

USG2—New Limiter 0.32850 0.00219
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FIG. 18. Inviscid-flow (M., = 0.7, « = 0°) solution for staggered biplane. (a) close-up view of grid; (b)
pressure contours; (c) upper airf@; (d) lower airfoil C,,.

staggered-biplane configuration the region between the airfoils acts as a channel w
accelerates the flow. As a result of this flow confinement a strong normal shock is forn
near the channel exit, which is captured accurately in Fig. 18b, and the isobars sh
compare well with those in the literature [34—-39]. TBgdistributions on both the airfoils
for unlimited and with the new limiter are plotted in Figs. 18c,d. The pressure distributi
on the upper surface of the lower airfoil shows a spike at the shock for the unlimited ce
which is effectively removed by the new limiter. No convergence difficulty was observe
for this case even for a reduction in the residual up to 10 orders of magnitude.

5.3. Two-Dimensional Navier—Stokes Solutions

The numerical examples reported in this section demonstrate the ability of the new
construction procedure to compute viscous flows on genuinely unstructured grids. Nav
Stokes solutions are obtained using Osher’s flux-difference splitting scheme for the con
tive fluxes whereas the viscous fluxes are based on face gradients computed at an inte|
It should be recalled that the higher-order-accurate procedure, based on the new re
struction strategy, readily provides face gradients for the viscous fluxes as an intermec
construction, which yield formulae similar to Egs. (15) and (16) at each interface, result
in a unified formulation.
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Boundary conditions are prescribed through the use of ghost cells at all the boundal
Ata solid wall, no-slip and isothermal wall boundary conditions are imposed to compute 1
two components of velocity and temperature, respectively. The wall temperature is take
be the free-stream total temperature. Pressure is extrapolated from the interior by compt
the higher-order-accurate value at the wall using a one-sided gradient. For all the visc
computations, the outer boundary is a circle located 50 chord lengths from the geome
center of the airfoil. Free-stream values are prescribed as far-field boundary conditions.
Navier—Stokes solutions have been converged up to 10 orders of magnitude reductic
L. norm of the residual, summed over the four nondimensional conservation equation

5.3.1. Viscous flow past a NACA 0012/iscous computations for flow past a NACA
0012 airfoil have been performed for two different flow parametersM() = 0.8, o =
10°, Re,, = 500 and (ii)M,, = 0.5, « = 0°, Re,, = 5000. The low-Reynolds-number test
case (i) is well documented [40] in the GAMM workshop on compressible Navier—Stok
computations. The significance of this flow stems from the presence of a large separ
region on the upper surface of the airfoil. The objective is to demonstrate the ability of 1
new reconstruction procedure to accurately resolve this complex flow feature on genuir
unstructured grids. To establish a comparison, results have also been obtained enz0160
structured-triangulated grid (STRI-V).

The unstructured grid (USG-V) with 512 points on the airfoil contains 24,686 cells in tt
computational domain, whose close-up view in Fig. 19a indicates the uniform cluster
near the surface of the airfoil. The main feature of the flow, a prominent vortex that extet
over 50% of the chord on the upper surface, as computed on the genuinely unstruct

e
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FIG. 19. Viscous-flow M., = 0.8, « = 10°, Re,, = 500) solution for NACA 0012 airfoil on genuinely
unstructured grid. (Note:-C; has been plotted for the lower surface.) (a) near-field view of grid; (b) streamline:
(c) pressure distribution; (d) skin-friction distribution.
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TABLE VI
Reference and Computed Lift and Drag Coefficients for NACA 0012 Viscous
CaseiM, =0.8,a = 1, Re,, = 500)

Parameter Cup Cy( Coota Ciotal
USG-V 0.15287 0.12439 0.27726 0.50231
STRI-V 0.14930 0.12286 0.27216 0.49394
GAMM [30] — — 0.243-0.2868 0.4145-0.517

grid, is clearly shown in Fig. 19b and compares well with that reported in [41]. The
streamlines also match those (not shown) obtained on STRI-V. The surface-pressure
skin-friction distributions in Figs. 19¢,d compare the solutions obtained on these two gri
The overall profiles are similar to those reported in literature [40]. It should be noted tl
theC, andC+ distributions computed on the genuinely unstructured grid are smooth a
are indistinguishable from structured-triangulated ones. This is also reflected in the t
(sum of pressure and skin-friction components) lift and drag coefficients given in Table"
TheC, andCy values obtained on USG-V and STRI-V are close to each other and are w
within the range reported in the GAMM workshop [40].

Most of the computations reported in literature, other than some in [40], follow either at
brid semi-structured grid, structured-triangulated grid [41-45], or an adapted unstructu
grid [46] for NACA 0012 airfoil computations. In the present work, however, a genuinel
unstructured grid (USG-V) has been shown to produce results which are in good ag
ment with those obtained on a structured-triangulated grid (STRI-V). It should be point
out that to accurately resolve the boundary layer, the size of the cell in a direction nor
to the boundary layer should be adequately small. In the case of structured-quadrilaf
grids, and also structured-triangulated grids derived from them, the “height” of the ce
can be controlled by varying the clustering independent of the “width” of the cells as ¢
fined by the distribution of points on the airfoil. However, the unstructured-grid-generati
program employed in the present work generates near-equilateral triangles and as are
becomes necessary to choose more points on the surface of the airfoil, in order to gen
cells of smaller size, which leads to a noticeable increase in the total number of cell:
the computational domain. However, the accuracy of results obtained combined with
suitability of unstructured grids for complex geometries offsets this small penalty one |
to pay for the use of a genuinely unstructured grid, even though it is possible to judiciou
control the total number of cells by reducing the number of cells in the far-field regio
A better grid-generation procedure based on the advancing-front method [47] would
able to achieve a more refined control in the near-field region as required for viscous f
simulations.

The second example, for the floMl,, = 0.5, « = 0°, Re,, = 5000 past a NACA 0012
airfoil, is considered a difficult test problem since the Reynolds number is near the up
limit for steady laminar flow [42, 44]. The results are computed on structured grid STRI-
alone because it was observed that the initially symmetric flow appeared to exhibit a n
asymmetry at this Reynolds number. The close-up view of structured-triangulated ¢
STRI-V, obtained from a perfectly symmetric structured grid which has been construc
by reflection about its chord, is shown in Fig. 20a. The streamlines in Fig. 20b near
trailing edge of the airfoil show slightly asymmetric vortices on either side ofytke0
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FIG. 20. High-Reynolds-number viscous-flowA(, = 0.5, « = 0°, Re,, = 5000) solution for NACA 0012
airfoil on structured—triangulated grid. (NoteC; has been plotted for the lower surface.) (a) near-field view of
grid; (b) streamlines; (c) pressure distribution; (d) skin-friction distribution.

axis. The cause for this asymmetry has not been identified and is beyond the scop
this investigation; it should be mentioned that the asymmetry disappeared upon signific
reduction of the Reynolds number. However, the pressure and skin-friction distributic
shown in Figs. 20c,d appear symmetric. This may be due to the fact that the vortices
located some distance away from the surface of the airfoil and the cores are just bel
the trailing edge. The lift coefficient, reported in Table VII, turns out to be zero. The dre
coefficients match well with those reported in the literature [48-50].

5.3.2. Viscous flow past a staggered-biplane configuratidio. further demonstrate the
capabilities of the new reconstruction procedure, the flow past a complicated geometry, ¢
the case of a staggered NACA 0012 biplane configuration, has been chosen for perforr
viscous flow computations. The grid, whose near-field view is shown in Fig. 21a, conta

TABLE VII
Reference and Computed Lift and Drag Coefficients for NACA 0012 Viscous
Caseii M, = 0.5, a = 0°, Re,, = 5000)

Parameter Cap Cuy Cootal Ciotal
STRI-V 0.02285 0.03272 0.05557 0.0000
Venkatakrishnan [48] 0.02300 0.03268 0.05568 —
Radespiel and Swanson [49] 0.02235 0.03299 0.05534 —

Crumptonet al.[50] 0.02260 0.03350 0.05610 —
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FIG.21. Viscous-flow M., = 0.8, = 10°, Re, = 500) solution for staggered biplane. (NoteC; has been
plotted for lower surfaces.) (a) near-field view of grid; (b) streamlines; (c) pressure distribution; (d) skin-fricti
distribution.

512 points on each airfoil with 23,232 triangular cells in the computational domain. T
streamlines corresponding to the flow paramekégs= 0.8,« = 10°, and Rg, = 500 are

shown in Fig. 21b. These flow conditions are the same as those for test case (i) invol
an isolated NACA 0012 airfoil. The separated region on the upper surface of top airfoil,
shownin Fig. 21b, reveals two vortices. The secondary vortex apparently is introduced by
addition of a bottom airfoil, which is evident by comparing Figs. 19b and 21b. The pressi
and skin-friction distributions for the two airfoils have been plotted in Figs. 21c,d. Althouc
no experimental data or reference solutions are available for this test case, plausible visc
flow features have been captured with the high-resolution unstructured-grid procedure

6. CONCLUSIONS

A high-resolution procedure has been developed for Euler and Navier—Stokes corr
tations on unstructured grids. It involves a gradient-reconstruction procedure devised
implementation within a multidimensional framework for a three-gradient limiter. Numer
cal experiments confirm the oscillation-removal capability of the proposed limiter, althou
this has not been proven rigorously, and its favorable convergence characteristics witl
one having to resort to freezing [13, 51] or any such palliative. A distinctive feature of tt
multidimensional limiter is that it exploits the gradient vector in determining the large
variation rather than explicitly employing the largest and the smallest values at the th
vertices, as computed based on the unlimited gradient within a computational cell, in
limiting process.



198 JAWAHAR AND KAMATH

It has been demonstrated that the new procedure, which possesses a dependen
a wide computational stencil that satisfies the criterion of beiggad neighborhoodbr
multidimensional limiting proposed in Ref. [52], is effective even on a grid that is compos
of highly distorted triangles. The high-resolution strategy has been shown not to suffer fr
a catastrophic loss of accuracy, on a grid with poor connectivity, as revealed in Ref. [
with many unstructured-grid limiting procedures. The limiter preserves the continuou:
differentiable property of the Osher flux-difference splitting scheme and would be w
suited for the matrix-free version of GMRES currently being pursued as a convergel
acceleration device for steady-state computations.

In would be desirable to extend the proposed high-resolution procedure to different
types as required for a hybrid grid consisting of structured-quadrilateral cells in the ne
field region and unstructured-triangular cells in the far-field region. Such an extension
be readily carried out in the case where the two regions are patched simply, with the inter
common to atriangle and quadrilateral being shared on a one-to-one basis. A straightforv
four-gradient generalization of the proposed reconstruction procedure would be requ
for the quadrilateral cells and it may work well since the grid distortions are not expect
to be very severe for such cells. However, it would be more worthwhile to test the fol
gradient generalization for a tetrahedra as required for three-dimensional unstructured-
computations. The gradient at each of the four triangular interfaces would then be base
the Green—-Gauss theorem applied to the union of two tetrahedra comprising three ve
and two cell-centered values.

APPENDIX

The gradient for a celin using the new reconstruction procedure (Section 3) is obtaine
fromthe cell-centered gradients corresponding to the three neighfipendc asillustrated
in Fig. 4 for a grid consisting of equilateral triangles. The gradients foagedh be obtained
by first computing the gradients at each interface and then combining the three interf
gradients by an area-weighted procedure. The resulting cell-centered gradient involves
three vertex values of the cell apart from the cell center values of the three neighb
yielding a hexagon-based procedure even for an arbitrary unstructured grid. The ve
values are computed using the pseudo-Laplacian approach as discussed in Section 2
value of any of the primitive variablasat the vertex 1 can be written as (assuming equé
weights here for equilateral triangles)

1
Up = & (Um + Ua + Up + Ug + Ue +Up), (A1)
with similar expressions fanz andug involving the corresponding cell-center values. The
x andy components of the gradient for the fac3in are given by

(Ux)1a3m = [(Um — Ua) Y31 + (Ug — U3)Yma] (A.2)

1
2A143m

(Uy)1a3m = [(Um — Ua)X31 + (U1 — U3)Xmal, (A.3)

" 2Aa3m

with analogous expressions for the faceél3and &l1d. Area weighting of the three face
gradients ensures cancellation at common interfaces and furnishes the gradientdor ce
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Equal areas yield weights of 2 for the grid in Fig. 4, it can also be inferred that = O,
Yma=2Ye1/3, Xma=0, Y36 = —Y61 = 3Yal = 3Yad, X36 = Xal = Xad = —X13/2, andA3s=
(Azazm + Asas + Asa1d)/2. Hence, thex andy components of the gradient for cellcan

be written as

(Ux)1d613m =

(Uy)1deiam =

1 1
2A136{2(UI —Uug) + E(Ua - Ul)} (A.4)

Y61
2A136

X13 [ 2] (Um — Up) . 1] (U4 u3)/2— (ug +up)/2
2A136 | 3] 4/3 3 2/3

7(u u)+1(u+u-+u) 1(u+u+u) (A.5)
12 | d 12 c j k 12 b e f .

(A.6)

Xz [ 7 (Ug +uw)
— Uy — ——= —|ZUp+Uc+Us+Us+Uj+u
2A136{12|: 2 :|+12|: (Up + Uc + Ue + Ut + ]+ k)

_(UA+UD+UL):|}- (A7)

Equations (A.4) and (A.6) reveal that the gradient is centered at the centroid af cell

It must be mentioned that for the and y components of the gradient, the contribu-
tions from cella vanish only for a grid consisting of equilateral triangles. It should alsi
be noted that Eqgs. (A.4) and (A.6) are similar in form to those presented in Ref. [53] 1
vertex-based finite-difference schemes, which have been derived based on phase-erro
siderations rather than from the Green—Gauss theorem and are limited to regular triang

grids.

Similar expressions can be written for cdil@ndc. The limited gradient for celin is
obtained using the weighted average of the gradients inaéd|lsandc in which the weights
are computed from the limiter function described in Section 4. To ensure cancellat
at common interfaces the unlimited gradients can be obtained using the area-weig
averages, which results in weights g8leach. The expressions for thandy components
of the gradient are given as

1
(Ux)m = é[(ux)a + (Ux)p + (Ux)c] (A-8)

Y12

_ 1 « u)+} Uk — Ue +i u — Ug +} Uk — Ue
T 2A 18] ¢ T2 T2 18 3 2\ 2

Y12
2A13,

U, — Ug 1 1 1
== < >+3(U|—Ud)] 12{ (Ui — Ug)+3(ul_ud)}

( )+%(U|—Ud)} +SE(UJ;UF>+%(U|—U¢1)]
i _“f>} (A.9)

1
{36[2uc+u.+8u,+uk+7u|+uc+u| +u3]

hi
e

1
_%[2ub+7ud+ue+8uf +Ug+UB+UF+UG]} (A.10)
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1
(Uy)m = é[(uy)a + (Uy)b + (Uy)c] (A-ll)
X3 1 Up + Uc 1 Ug + Uc Ue + Uk
= antam (7)o el () - (%57))

}{(ug+uc)/2— (Ug +uu)/2] +}Kug+uc> B <Uf +Uj>:|
2 6 2 2

2
+1[ h— (Us +Uj)/2} +1{(UF+UJ)/2_(UD+UL)/2}
12 2 12 2
(U +Uc)/2 —ua
YT wio

X13 1 /up+ U 5 [Ug + Ui 1 1 /ug+uc
= - + + el + oz
2A13, | |18 2 12 2 36 36 2
1 /ug+uy 1 /ug+u 1 1/uq+uy
+36( 2 )*36( 2 ﬂ [18a+ ( 2 >
1 /Ue+ Uk 1/us +u; 1 1 /up+u
— = — Al
+36< 2 )+6< 2 )+36 AJr18< 2 )]} (A13)
whereA;3,is the area of computational cell »3. It may be noted that in this particular case,

the x andy components of the gradients, respectively, possess a dependence on ste
with 16 and 21 points.

For Frink’s reconstruction, the expressions for the gradients imte#dn be written as

2 “[us — U] (A.14)

(U)m = [U1Y23 + UzYsy + Usyio] =

Y1
2A13, 2A13

(Uy)m = -

X13 (U1 + ug)
[U1X23 + U2X31 4 UsX12] = [uz =

—— . (AA5
2A132 2A 132 2 :| ( )

This indicates that the andy components of the gradient are centere@at + X3)/2, y1)
and((x1 + X3)/2, (Y1 + ¥2)/2), respectively. Substituting for the cell-vertex values in terms
of the cell-center values we can write the above equations as

Y12
2A13,

Xz [1]/Up+Uc
Um= =———< = —u
(Uy)m 2A132{ 6 K 2 ) a}

1 1
—6[(ug+uh+ui) — E(Uj + Ug + U + Ug +ue+uf)]}. (A.17)

(U)m = {é(uc — Up) + %(Uj +uc+u) — %(Ud + Ue + Uf)} (A.16)

This clearly shows that Frink’s construction leads to 8- and 12-point stencils that respectiv
determine thex andy components of the gradient.

Similar expressions for theandy components of the gradient can be written using Bartt
and Jespersen’s 3-point stencil, which involves only the cell-center values of the nea
neighbors:

1 Y12
— = < — A.18
(Uy)m 2A132[uaybc + UpYea + UcYab] 2A132[uc Up] ( )
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1 X Up+Uu
(Uy)m = —Wm[uaxbc + UpXca + UcXap] = Tll; szc> - Ua} . (A19)

The gradients for the ceth using Barth and Jespersen’s 12-point stencil can be obtain
by area-weighted averaging of the gradients at its three vertices 1, 2, and 3. The grad
at a vertex are computed by applying the Green—Gauss theorem to the cell-centered v
that are common to a vertex. The average of the vertex gradients then yields the gradi
at the centroid of a cell. The two components of the gradient obtained using this procec
are

1
(U)m = 2x11232{6[(uc — Up) + (Ui —Ug) + (Uj —Us) + (U — Ue)]} (A.20)
oy 1 _ _ 1
= 2A132{6(UC+UI =+ Uj + Uk) 6(Ub+Ue+Uf +Ug)} (A.21)
X3 1 (Um — Ua) + (Uf — Ue)
(Uy)m = 2A132{6 {(ub U+ ( : )}
1 B (Ui — Uc) + (Ug — Up)
+ 6 |:(Uh Um) + ( > >:|
+}|:(Uc—ui)+ <(uj _ukH(U"‘_u""))H (A.22)
6 2
_ X13 1 _ .
= 2A132{12[Ub+uc+uf + Ug + 2up + Uj + uj]
- %2[2ua + 2Ug + Ue + U + 2u|]}. (A.23)

This indicates that the andy components of the gradient depend on stencils with 8 and
points, respectively. A comparison with Frink’s construction reveals that the points involv
are the same foy, but with a different formula altogether, but not for thgradients.
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